COMP 520 - Compilers

Lecture 13 — Branch Construction



PA3 Extension
Due on Friday 3/22 11:59pm
(Late penalty afterwards)



Finally, PA4 |

* PAl: Large step into an unknown project
* PA2: Comply with someone else’s code

* PA3: Organize and finish the project (your code and
theirs) to accomplish the goal of validating input
source code

*PA4: ?
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Finally, PA4 |

* PA4: Research the unknown, read documentation,
and write the bytecode output!
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Today’s Goal

Implement:

if( (a>b)=(c<d) ) {
a = 3,
b = 4;
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Today’s Goal

Implement:

Using Comparisons
if(i(a>=b {(c<d)}/ﬂ

a = 3, Storing Comparisons

b = 4;
} \ /\
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(for comparing later)

Conditional Execution
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Intermediate Goal

* What does code generation look like?
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Intermediate Goal (2)

* What does code generation look like?

e General idea: Work on one section at a time.
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Intermediate Goal (3)

e Where is our code? Where is our data?

* Don’t know, don’t need to know vyet, first section we
work on is generating “oblivious” incomplete code.
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Virtual Memory

What you could spend days/weeks on, gets two slides.
Access: Ox005418EF

{Process 1}sees: Memory Chunk: 00400000 — 007FFFFF

Translation Layer (Page Tables)

Physical Memory

Access: Ox7E1F 0000 0000 OSEF
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Virtual Memory

What you could spend days/weeks on, gets two slides.
Access: 0x005418EF (same address as Procl)

{Process ZJsees: Memory Chunk: 00400000 — 007FFFFF

Translation Layer (Page Tables)

Physical Memory

Access: Ox8E6F 0230 0000 O8EF
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Variable References- Where?

e |If it is static, it is in either .bss or .data

* Strategy: Pick afor .bss, and assign each static
variable an m from the start of .bss
* Then, pick a start address for .bss
* E.g. “.bss starts in memory at 0x00400000”

12
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Where is .bss?

* We can set it if we are an executable file
* We don’t get to set it if we are a shared object.

* A shared object is loaded “somewhere” in a parent process.
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Where is .bss?

* We can set it if we are an executable file
* We don’t get to set it if we are a shared object.

* |n the latter case, where is .bss?

* How can | refer to 0x40408080C0C00000 + bssOffset when |
don’t actually know where .bss starts from?

* To test your researching capabilities, this will be a WA3
guestion (coming soon!)
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Executable Section

* We won’t know the size of the executable section
until we’re done.

* We do need a start address though (unless .so)

 Strategy: Pick “.text starts at 0Ox00800000”
* Where we know the size of any previous sections.
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Code Generation

 Strategy: Evaluate simple expressions with RAX
* We will need additional complexity for PA4
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Code Generation Example

Visit Method

17
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«_ \

Code Generation Example

Visit Stmt
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)

prm—— |

Code Generation Example o

X tbp—-0 %

[sub rsp,S]

Create “x”

19
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Code Generation Example o

X tbp—-0 %

sub rsp, 8

[mov rax,4}

20

COMP 520: Compilers —S. Ali



)

prm—— |

Code Generation Example o

X tbp—0 4

sub rsp, 8

mov rax, 4

{mov [rbp:,raxj
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Code Generation Example o

X tbp—0 4

sub rsp, 8

mov rax, 4

mov [rbpl, rax [EER

22
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prm—— |

Code Generation Example o

X tbp—0 4

sub rsp, 8

mov rax, 4

mov |[rbp], rax

- ~
mov rax, Lrbp]

add rax, 3
N y,
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Code Generation Example o

X tbp-0 7

sub rsp, 8

mov rax, 4

mov |[rbp], rax

_I_
_I_
_I_

mov rax, Lrbp]
add rax, 3

{mov [rbp],rax}

24
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Code Generation Example o

X tbp-0 7

sub rsp, 8
mov rax, 4

mov |[rbp], rax
- Visit Stmt
rbp

mov rax,
add rax, 3
mov |[rbp], rax

25
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Code Generation Example o
X tbp-0 7
y trbhp-8 ?

sub rsp, 8
mov rax, 4
mov |[rbp], rax
mov rax, | rbp] v

Create “y
add rax, 3
mov |[rbp], rax

+ + I+

[Sub rsp, 8 J

26
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prm—— |

Code Generation Example o
X tbp-0 7
rbp—-8  ?

sub rsp, 8
mov rax, 4 y
mov |Lrbp], rax
mov rax, |rbp]
add rax, 3

mov |rbpl, rax
sub rsp, 8

_I_
_I_
_I_

{mov rax, 2 J
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Code Generation Example o

sub rsp, 8
mov rax, 4
mov |[rbp], rax
mov rax, |rbp]
add rax, 3
mov |[rbp], rax
sub rsp, 8
mov rax, 2

_I_
_I_
_I_

[mov [rbp-8],raxi}
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X tbp-0 7
y Trbp—8 2
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prm—— |

sub rsp, 8 Code Generation Example

X tbp-0 7
y <tbhp—8 2

mov rax, 4
mov |[rbp], rax

mov rax, |rbp]
add rax, 3

mov |[rbp], rax Visit Stmt
sub rsp, 8

+ + I+

mov rax, 2

mov |[rbp—8], rax

29
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prm—— |

sub rsp, 8

mov rax, 4 Ccode Generation Example
mov |rbp], rax x tbp0 7
mov rax, _rbp]

add rax, 3 i
mov |[rbp], rax _ 4

sub rsp, 8 i

mov rax, 2 i:y;

mov [rbp—8], rax

mov rax, _rbp]
add rax, [rbp—8]

COMP 520: Compilers —S. Ali
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sub rsp, 8 d : ‘
mov lial}; 31 Code Generation Example
mov |rbp], rax
mov rax, _rbp] x| gl | €
add rax, 3 y rbp=8 2
mov |[rbp], rax
sub rsp, 8
mov rax, 2
mov [rbp—8], rax
mov rax, |rbp]
add rax, [rbp—8]

Flat assembler file is on the
[mov . rbp], rax } course website if you want it.

31
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Let’s see this in action.

Additionally, see how branching is done!



v eie

Ll

=]

HEMFDHS

AUTEFIRE

INn-Class
Demo

FTL: Faster Than Light

Goals: observe register
and branch behavior

33

,Y"
&&

An unvisited location.
The nebula here will make
fleet pursuit slower but

L 4 will disrupt your sensors.
R

e

Civilian Sector '




Generating Branches
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e Recall: cmp 4,
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Condition

b = set RFLAGS after “a—b”
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Conditions (S1)
(a>b) = ((c<d)

* Strategy 1: Is there a way to get data out of the FLAGS
and store them somewhere?

tempO0 = a >= b
templ = ¢ < d

tempO = tempO == templ
cmp tempO, O

inz -
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* Strategy 2: Figure out a way to leave the last binary

Conditions (S2)

(a>b) = (c<d)

comparison, and utilize je at the very end

tempO
templ

a >=b
c < d

cmp tempO, templ

je -

COMP 520: Compilers —S. Ali
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Conditions (S3)
(a>b) = (c<d)

* Strategy 3: use the conditional jumps themselves:

isEqual:

End:
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cmp a, b cmp ¢, d

jge isEqual jl 1sEq2

mov [rbp—04], 0 mov |rbp—08], 0

jmp End jmp End2

mov |rbp—04],1 isEq2: mov [rbp-08], 1
End2: ---
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Conditions (S3)

(a>b) = ((c<d)

e Strategy 3 (continued):

mov rax, [rbp—04.

cmp rax, [rbp—08.
je finallIsEqual
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Strategy 3

* This strategy isn’t wrong, just inelegant
* Optimization is actually quite difficult

COMP 520: Compilers —S. Ali
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What do you think?

* What does the VisualC compiler do?
e Strategy 1, 2, 3, or something else?

*Or is it something so optimized that it would take an
hour to analyze?

*Taking guesses!

COMP 520: Compilers —S. Ali
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What strategy is this?

11: if ((a >=b) == (c <d)) {
OO0007FF6CDA24217 8B 45 24 eax,dword ptr [b]
O0007FF6CDA2421A 39 45 o4 dword ptr [a],eax
OOOO7FF6CDA2421D 7C OC ] main+U4Bh (O@7FF6CDA2U422Bh)
OO0007FF6CDA2421F C7 85 34 00 00 00 mov dword ptr [rbp+134h],1
OO0007FF6CDA24229 EB 0A jmp main+55h (O@7FF6CDA24235h)
OOOO7FF6CDA2422B C7 85 34 00 00 00 mov dword ptr [rbp+134h],0
POEE7FF6CDA2U235 8B U5 6U mov eax,dword ptr [d]
POOOET7FF6CDA24238 39 45 44 cmp dword ptr [c],eax
OOOO7FF6CDA2423B 7D 0C jge main+69h (O@7FF6CDA24249h)
OOOO7FF6CDA2423D C7 85 38 01 00 00 00 00 OO0 mov dword ptr [rbp+138h],1
OO0007FF6CDA24247 EB OA jmp main+73h (O@7FF6CDA24253h)
OOOO7FF6CDA24249 C7 85 38 01 00 00 00 00 00 mov dword ptr [rbp+138h],0
OO0O7FF6CDA24253 8B 85 38 01 00 06 mov eax,dword ptr [rbp+138h]
OO0O7FF6CDA24259 39 85 34 01 00 00 cmp dword ptr [rbp+134h],eax
OOO07FF6CDA2U25F 75 0C jne main+8Dh (O@7FF6CDA2U426Dh)

12: printf("true\n");
OO0007FF6CDA24261 48 8D OD 60 69 00 lea rcx, [string "true\n" (O7FF6CDA2ABC8h) ]
O0007FF6CDA24268 E8 E9 D1 FF FF call printf (O07FF6CDA21456h)

13: }
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11: if ((a >=b) == (c <d)) {
OOOO7FF6CDA24217 8B 45 24
OOOO7FF6CDA2421A 39 45 o4
OOOOT7FF6CDA2421D 7C 0OC
OOOOT7FF6CDA2421F C7 85 34 01 00 00 01
O0007FF6CDA24229 EB OA
POOO7FF6CDA2422B C7 85 34 01 00 00 00
OOOO7FF6CDA24235 8B U5 e4d
OOOO7FF6CDA24238 39 45 44
O0007FF6CDA2423B 7D OC
O0007FF6CDA2423D C7 85 38 01 00 00 01
POOOT7FF6CDA2U247 EB OA
OOOO7FF6CDA24249 C7 85 38 01 00 00 00
OOOO7FF6CDA24253 8B 85 38 01 00 00
OPOOT7FF6CDA24259 39 85 34 01 00 00
O0007FF6CDA2425F 75 0OC

12: printf("true\n");
O0007FF6CDA24261 U8 8D OD 60 69 00 00

OO0O7FF6CDA2U4268 E8 E9 D1 FF FF
13: }

mov

cmp

jl

00 00 00
jmp

00 00 00
mov

cmp

jge

00 00 00
jmp

00 00 00
mov

cmp

jne

lea
call

eax,dword ptr [b]
dword ptr [a],eax
main+4Bh (@7FF6CDA2422Bh)

dword ptr [rbp+134h],1
main+55h (@7FF6CDA24235h)

dword ptr [rbp+134h],0
eax,dword ptr [d]
dword ptr [c],eax
main+69h (@7FF6CDA24249h)

dword ptr [rbp+138h],1
main+73h (@7FF6CDA24253h)

dword ptr [rbp+138h],0
eax,dword ptr [rbp+138h]
dword ptr [rbp+134h],eax
main+8Dh (@7FF6CDA2426Dh)

mov

mov

mov

mov

rcx, [string "true\n" (07FF6CDA2ABC8h)]
printf (@7FF6CDA21456h)



MSVC Used Strategy 3!

*Yes, that’s right

* Throw out

°In the wor
(Andifint

preconceived notions of elegant/inelegant

d of assembly, you do what works!

ne business of optimization, you find the

fastest operations, even if it is horribly inelegant)

COMP 520: Compilers —S. Ali
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Organizing Assembly

* We could spend an entire semester on optimization
strategies where we just build the compiler more and
more and more...

*In the interest of time, you may want to take shortcuts
in PA4. If it increases execution time by 40ns, the
autograder won’t likely notice.

45
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Strategy 1 & 2 (Easy)

* There are instructions that you can use

setz, setl, setle, setg,

COMP 520: Compilers —S. Ali

setge
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Strategy 1 & 2 (Easy)

* There are instructions that you can use

setz, setl, setle, setg, setge

* They will set a byte (al/cl/dl/bl/ah/ch/dh/bh)
depending on if the flags are zero, less, ..., etc.

* But what if you didn’t see that documentation?

COMP 520: Compilers —S. Ali
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More Registers?

* Wait a minute, al/cl/dl/bl/ah/ch/dh/bh are not
registers we have seen before!

COMP 520: Compilers —S. Ali
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)

x64 General Purpose Registers Overview

* Wait a minute, al/cl/dl/bl/ah/ch/dh/bh are not
registers we have seen before!

RAX

64-bit

49
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=

x64 General Purpose Registers Overview

32-bit

64-bit
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x64 General Purpose Registers Overview

16-bit

32-bit

64-bit

COMP 520: Compilers —S. Ali
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x64 General Purpose Registers Overview

EAX AX
E—
8bit: AH AL

\ J
‘ 16-bit ,

Y
\ ' 32-bit ;
64-bit

52
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Useful Register List

64-bit RAX RCX RDX RBX RSP RBP RSI RDI

32-bit = EAX ECX EDX EBX ESP EBP ESI EDI
16-bit AX CX DX BX SP BP S DI
8-bit AH AL CH CL DH DL BH BL ? ? ? ?

Honorable Mentions: MMO, ST(0), XMMO, YMMO, ZMMO, CS, SS, DS, ES, FS,
GS, GDTR, IDTR, TR, LDTR, CR, DR, IP...

53
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Useful Register List (2) (REX prefix)

64-bit R8 R9 R10 R11 R12 R13 R14 R15
32-bit | R8D RIAD R10D @ R11D @ R12D | R13D R14D @ R15D

If operand R: REX.R, if R/M base: REX.B, if index: REX.X

Note: Flag REX.W has to be set to use 64-bit operands (RAX-R15)
(otherwise it defaults to 32-bit operand EAX-R15D)
We will cover encoding later.

54
COMP 520: Compilers —S. Ali



)

=

Back to the problem

* This emulates what your googling might look like:

* “Oh, | see something | haven’t seen before”
* “ have now learned the new thing”
* “How can | apply the new thing?”

COMP 520: Compilers —S. Ali
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Back to the problem

* We are currently after:

e “| want to resolve a == b” to a value

COMP 520: Compilers —S. Ali
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Back to the problem

* We are currently after:

* “l want to resolve a == b” to a value

| will XOR RAX,RAX (Why?)
o | will CMP a,b |
e | will SE'TE al

 Now RAX contains 0 or 1, depending on a==b
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Strategy 1 & 2 (Easy)

* But what if you didn’t see that documentation?
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Strategy 1 & 2

* There is an instruction that you can use

pushfq

t stores the RFLAGS data on the stack

F-rom t

* Examp

nis, we can determine >=, <=, <, >, ==, I=

e: [rsp] & 0x00CO

Same as “<="
Why? (You will need to research RFLAGS)
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Strategy 1 & 2 (without 5.

if( [rsp] & 0x00CO )

Any ideas on what the corresponding assembly looks

like? Hint: cmp is not needed.

COMP 520: Compilers —S. Ali

=L

(L)

60



Strategy 1 & 2 (without SE'TL.

e

if( [rsp] & 0x00CO )

Any ideas on what the corresponding assembly looks
like? Hint: cmp is not needed.

- N
and gword|rsp], 0xCO

JHZ e o o
- )
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Lastly: Conditional jump is misleading

if( cond )
StmtA
StmtB

Will see this in action in
the next section

More accurately: jump if the condition is NOT true.

So 1fStmt will be: jmp if condition is false, otherwise
continue to “ThenStmt”, then jmp past “ElseStmt”

62
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What have we learned?

* Evaluating the condition parameter will be challenging

* But not intellectually difficult, just need to make sure
your code “lines up” properly with what you want.

63
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Organizing Then/Else
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Two chunks of code

* What to execute w

* What to execute w

if( cond )
ThenStmt
(else ElseStmt)?
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nen t

nen t

ne condition is true (if cond)

ne condition is false (else)
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Recall Demo Example

.text:88518FC9 mov eax, [eaxyiD4h]
.text:@88518FCF cmp [ecx+BEBh], eax ; This looks interesting
.text:@88518FD5 jg short loc_ text 513FF@ ; Some kind of compariscon
5 ¥ L
e (5] ] (i =]
.text:88518FD7 mov eax, [ecx] .text:88518FF@
.text:88518FD9 call dword ptr [eax+28h] .text:@8@8518FF@ loc_ text S518FF@:
.text:88518FF@ mov ecx, offset dword bss 9196E@
.text:@8518FF5 mov dword ptr [esp], &
.text:@8@8518FFC lea ebx, [ebpt+var 18]
.text:@@8518FFF call sub text SBA3AR

COMP 520: Compilers —S. Ali
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Recall Demo Example

.text:88518FC9 mov eax, [eaxyiD4h]
.text:@88518FCF cmp [ecx+BEBh], eax ; This looks interesting
.text:@88518FD5 jg short loc_ text 513FF@ ; Some kind of compariscon
Y Y
e (5] ] (i =]
.text:88518FD7 mov eax, [ecx] .text:88518FF@
.text:88518FD9 call dword ptr [eax+28h] .text:@8@8518FF@ loc_ text S518FF@:
.text:88518FF@ mov ecx, offset dword bss 9196E@
.text:@8518FF5 mov dword ptr [esp], &
.text:@8@8518FFC lea ebx, [ebpt+var 18]
.text:@@8518FFF call sub text SBA3AR
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The “not true” portion of code is
immediately after the “jump if true”
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Recall Demo Example

.text:88518FC9 mov eax, [eaxyiD4h]
.text:@88518FCF cmp [ecx+BEBh], eax ; This looks interesting
.text:@88518FD5 jg short loc_ text 513FF@ ; Some kind of compariscon
¥ 5 L
bl el = ] e 5=
.text:88518FD7 mov eax, [ecx] .text:88518FF@
.text:88518FD9 call dword ptr [eax+28h] .text:@8@8518FF@ loc_ text S518FF@:
.text:88518FF@ mov ecx, offset dword bss 9196E@
.text:@8518FF5 mov dword ptr [esp], &
.text:@8@8518FFC lea ebx, [ebpt+var 18]
.text:@@8518FFF call sub text SBA3AR

But we don’t always have an else statement!
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Misleading Conditions Part 1

if( x==3) We have no else statement.

X = 4; What if we branch on the same

y = 3; ‘condition as our source code?

4

i.e., use “je” because we see “==’

69
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if( x ==

y = 3,

COMP 520: Compilers —S. Ali

X = 4;

Misleading Conditions Part 1

3)

We have no else statement.

So the code could be:

IsEq:
Afterkq:

cmp [x], 3
je IsEq

jmp Afterkq
mov |x], 4
mov |y], 3

70
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Misleading Conditions Part 2

‘ if(x==3) cmp [x], 3
X = 4; jne AfterIfStmt
y = 3; h mov [x], 4

AfterIfStmt: mov [y], 3

| .

Less instructions is better!

71
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Misleading Conditions Part 3

if( x ==
X = 4;
else

x = b;

y = 3;

COMP 520: Compilers —S. Ali

3 )

cmp
jne
mov
Jmp
AfterIfStmt: mov
AfterElseStmt :mov

[x], 3
Afterl{fStmt
1x],4
AfterElseStmt
[x], 5

Ly], 3
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Instruction Patching

e But we do not know where an “AfterlfStmt” is!
e |deas?

COMP 520: Compilers —S. Ali
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Instruction Patching (2)

e But we do not know where an “AfterlfStmt” is!

* Generate a placeholder conditional jump
*E.g., Jjge 0x00000000

* Keep track of where you have this placeholder

COMP 520: Compilers —S. Ali
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Instruction Patching (3)

* Generate a placeholder conditional jump
*E.g., Jjge 0x00000000

* Keep track of w
* Generate the “t

nere you have this placeholder

nenStmt” code

* Finally, go back and patch “placeholder”
e jge 0x00000000 -> jge 0x00001CEO

COMP 520: Compilers —S. Ali
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PA3 Due soon, PA4 Next!
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End
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