COMP 520 - Compilers

Lecture 13 — Branch Construction

PA3 Extension
Due on Friday 3/22 11:59pm
(Late penalty afterwards)

Finally, PA4 |

* PAl: Large step into an unknown project
* PA2: Comply with someone else’s code

* PA3: Organize and finish the project (your code and
theirs) to accomplish the goal of validating input
source code

*PA4: ?

COMP 520: Compilers —S. Ali

Finally, PA4 |

* PA4: Research the unknown, read documentation,
and write the bytecode output!

COMP 520: Compilers —S. Ali

Today’s Goal

Implement:

if((a>b)=(c<d)) {
a = 3,
b = 4;

COMP 520: Compilers —S. Ali

Today’s Goal

Implement:

Using Comparisons
if(i(a>=b {(c<d)}/ﬂ

a = 3, Storing Comparisons

b = 4;
} \ /\

COMP 520: Compilers —S. Ali

(for comparing later)

Conditional Execution

6

Intermediate Goal

* What does code generation look like?

COMP 520: Compilers —S. Ali

Intermediate Goal (2)

* What does code generation look like?

e General idea: Work on one section at a time.

COMP 520: Compilers —S. Ali

Intermediate Goal (3)

e Where is our code? Where is our data?

* Don’t know, don’t need to know vyet, first section we
work on is generating “oblivious” incomplete code.

COMP 520: Compilers —S. Ali

Virtual Memory

What you could spend days/weeks on, gets two slides.
Access: Ox005418EF

{Process 1}sees: Memory Chunk: 00400000 — 007FFFFF

Translation Layer (Page Tables)

Physical Memory

Access: Ox7E1F 0000 0000 OSEF

10
COMP 520: Compilers —S. Ali

Virtual Memory

What you could spend days/weeks on, gets two slides.
Access: 0x005418EF (same address as Procl)

{Process ZJsees: Memory Chunk: 00400000 — 007FFFFF

Translation Layer (Page Tables)

Physical Memory

Access: Ox8E6F 0230 0000 O8EF

11
COMP 520: Compilers —S. Ali

Variable References- Where?

e |If it is static, it is in either .bss or .data

* Strategy: Pick afor .bss, and assign each static
variable an m from the start of .bss
* Then, pick a start address for .bss
* E.g. “.bss starts in memory at 0x00400000”

12
COMP 520: Compilers —S. Ali

Where is .bss?

* We can set it if we are an executable file
* We don’t get to set it if we are a shared object.

* A shared object is loaded “somewhere” in a parent process.

COMP 520: Compilers —S. Ali

13

Where is .bss?

* We can set it if we are an executable file
* We don’t get to set it if we are a shared object.

* |n the latter case, where is .bss?

* How can | refer to 0x40408080C0C00000 + bssOffset when |
don’t actually know where .bss starts from?

* To test your researching capabilities, this will be a WA3
guestion (coming soon!)

COMP 520: Compilers —S. Ali

14

Executable Section

* We won’t know the size of the executable section
until we’re done.

* We do need a start address though (unless .so)

 Strategy: Pick “.text starts at 0Ox00800000”
* Where we know the size of any previous sections.

COMP 520: Compilers —S. Ali

15

Code Generation

 Strategy: Evaluate simple expressions with RAX
* We will need additional complexity for PA4

COMP 520: Compilers —S. Ali

16

=)

«_

Code Generation Example

Visit Method

17
COMP 520: Compilers —S. Ali

)

=

«_ \

Code Generation Example

Visit Stmt

18
COMP 520: Compilers —S. Ali

)

prm—— |

Code Generation Example o

X tbp—-0 %

[sub rsp,S]

Create “x”

19

COMP 520: Compilers —S. Ali

Code Generation Example o

X tbp—-0 %

sub rsp, 8

[mov rax,4}

20

COMP 520: Compilers —S. Ali

)

prm—— |

Code Generation Example o

X tbp—0 4

sub rsp, 8

mov rax, 4

{mov [rbp:,raxj

21

COMP 520: Compilers —S. Ali

Code Generation Example o

X tbp—0 4

sub rsp, 8

mov rax, 4

mov [rbpl, rax [EER

22

COMP 520: Compilers —S. Ali

)

prm—— |

Code Generation Example o

X tbp—0 4

sub rsp, 8

mov rax, 4

mov |[rbp], rax

- ~
mov rax, Lrbp]

add rax, 3
N y,

23

COMP 520: Compilers —S. Ali

)

—,

Code Generation Example o

X tbp-0 7

sub rsp, 8

mov rax, 4

mov |[rbp], rax

I
I
I

mov rax, Lrbp]
add rax, 3

{mov [rbp],rax}

24
COMP 520: Compilers —S. Ali

Code Generation Example o

X tbp-0 7

sub rsp, 8
mov rax, 4

mov |[rbp], rax
- Visit Stmt
rbp

mov rax,
add rax, 3
mov |[rbp], rax

25

COMP 520: Compilers —S. Ali

)

—,

Code Generation Example o
X tbp-0 7
y trbhp-8 ?

sub rsp, 8
mov rax, 4
mov |[rbp], rax
mov rax, | rbp] v

Create “y
add rax, 3
mov |[rbp], rax

+ + I+

[Sub rsp, 8 J

26

COMP 520: Compilers —S. Ali

)

prm—— |

Code Generation Example o
X tbp-0 7
rbp—-8 ?

sub rsp, 8
mov rax, 4 y
mov |Lrbp], rax
mov rax, |rbp]
add rax, 3

mov |rbpl, rax
sub rsp, 8

I
I
I

{mov rax, 2 J

27
COMP 520: Compilers —S. Ali

)

—,

Code Generation Example o

sub rsp, 8
mov rax, 4
mov |[rbp], rax
mov rax, |rbp]
add rax, 3
mov |[rbp], rax
sub rsp, 8
mov rax, 2

I
I
I

[mov [rbp-8],raxi}

COMP 520: Compilers —S. Ali

X tbp-0 7
y Trbp—8 2

28

)

prm—— |

sub rsp, 8 Code Generation Example

X tbp-0 7
y <tbhp—8 2

mov rax, 4
mov |[rbp], rax

mov rax, |rbp]
add rax, 3

mov |[rbp], rax Visit Stmt
sub rsp, 8

+ + I+

mov rax, 2

mov |[rbp—8], rax

29

COMP 520: Compilers —S. Ali

)

prm—— |

sub rsp, 8

mov rax, 4 Ccode Generation Example
mov |rbp], rax x tbp0 7
mov rax, _rbp]

add rax, 3 i
mov |[rbp], rax _ 4

sub rsp, 8 i

mov rax, 2 i:y;

mov [rbp—8], rax

mov rax, _rbp]
add rax, [rbp—8]

COMP 520: Compilers —S. Ali

30

sub rsp, 8 d : ‘
mov lial}; 31 Code Generation Example
mov |rbp], rax
mov rax, _rbp] x| gl | €
add rax, 3 y rbp=8 2
mov |[rbp], rax
sub rsp, 8
mov rax, 2
mov [rbp—8], rax
mov rax, |rbp]
add rax, [rbp—8]

Flat assembler file is on the
[mov . rbp], rax } course website if you want it.

31

COMP 520: Compilers —S. Ali

Let’s see this in action.

Additionally, see how branching is done!

v eie

Ll

=]

HEMFDHS

AUTEFIRE

INn-Class
Demo

FTL: Faster Than Light

Goals: observe register
and branch behavior

33

,Y"
&&

An unvisited location.
The nebula here will make
fleet pursuit slower but

L 4 will disrupt your sensors.
R

e

Civilian Sector '

Generating Branches

COMP 520: Compilers —S. Ali

e Recall: cmp 4,

COMP 520: Compilers —S. Ali

Condition

b = set RFLAGS after “a—b”

35

Conditions (S1)
(a>b) = ((c<d)

* Strategy 1: Is there a way to get data out of the FLAGS
and store them somewhere?

tempO0 = a >= b
templ = ¢ < d

tempO = tempO == templ
cmp tempO, O

inz -

COMP 520: Compilers —S. Ali

* Strategy 2: Figure out a way to leave the last binary

Conditions (S2)

(a>b) = (c<d)

comparison, and utilize je at the very end

tempO
templ

a >=b
c < d

cmp tempO, templ

je -

COMP 520: Compilers —S. Ali

37

Conditions (S3)
(a>b) = (c<d)

* Strategy 3: use the conditional jumps themselves:

isEqual:

End:

COMP 520: Compilers —S. Ali

cmp a, b cmp ¢, d

jge isEqual jl 1sEq2

mov [rbp—04], 0 mov |rbp—08], 0

jmp End jmp End2

mov |rbp—04],1 isEq2: mov [rbp-08], 1
End2: ---

38

Conditions (S3)

(a>b) = ((c<d)

e Strategy 3 (continued):

mov rax, [rbp—04.

cmp rax, [rbp—08.
je finallIsEqual

COMP 520: Compilers —S. Ali

Strategy 3

* This strategy isn’t wrong, just inelegant
* Optimization is actually quite difficult

COMP 520: Compilers —S. Ali

40

What do you think?

* What does the VisualC compiler do?
e Strategy 1, 2, 3, or something else?

*Or is it something so optimized that it would take an
hour to analyze?

*Taking guesses!

COMP 520: Compilers —S. Ali

41

What strategy is this?

11: if ((a >=b) == (c <d)) {
OO0007FF6CDA24217 8B 45 24 eax,dword ptr [b]
O0007FF6CDA2421A 39 45 o4 dword ptr [a],eax
OOOO7FF6CDA2421D 7C OC] main+U4Bh (O@7FF6CDA2U422Bh)
OO0007FF6CDA2421F C7 85 34 00 00 00 mov dword ptr [rbp+134h],1
OO0007FF6CDA24229 EB 0A jmp main+55h (O@7FF6CDA24235h)
OOOO7FF6CDA2422B C7 85 34 00 00 00 mov dword ptr [rbp+134h],0
POEE7FF6CDA2U235 8B U5 6U mov eax,dword ptr [d]
POOOET7FF6CDA24238 39 45 44 cmp dword ptr [c],eax
OOOO7FF6CDA2423B 7D 0C jge main+69h (O@7FF6CDA24249h)
OOOO7FF6CDA2423D C7 85 38 01 00 00 00 00 OO0 mov dword ptr [rbp+138h],1
OO0007FF6CDA24247 EB OA jmp main+73h (O@7FF6CDA24253h)
OOOO7FF6CDA24249 C7 85 38 01 00 00 00 00 00 mov dword ptr [rbp+138h],0
OO0O7FF6CDA24253 8B 85 38 01 00 06 mov eax,dword ptr [rbp+138h]
OO0O7FF6CDA24259 39 85 34 01 00 00 cmp dword ptr [rbp+134h],eax
OOO07FF6CDA2U25F 75 0C jne main+8Dh (O@7FF6CDA2U426Dh)

12: printf("true\n");
OO0007FF6CDA24261 48 8D OD 60 69 00 lea rcx, [string "true\n" (O7FF6CDA2ABC8h)]
O0007FF6CDA24268 E8 E9 D1 FF FF call printf (O07FF6CDA21456h)

13: }

COMP 520: Compilers —S. Ali

11: if ((a >=b) == (c <d)) {
OOOO7FF6CDA24217 8B 45 24
OOOO7FF6CDA2421A 39 45 o4
OOOOT7FF6CDA2421D 7C 0OC
OOOOT7FF6CDA2421F C7 85 34 01 00 00 01
O0007FF6CDA24229 EB OA
POOO7FF6CDA2422B C7 85 34 01 00 00 00
OOOO7FF6CDA24235 8B U5 e4d
OOOO7FF6CDA24238 39 45 44
O0007FF6CDA2423B 7D OC
O0007FF6CDA2423D C7 85 38 01 00 00 01
POOOT7FF6CDA2U247 EB OA
OOOO7FF6CDA24249 C7 85 38 01 00 00 00
OOOO7FF6CDA24253 8B 85 38 01 00 00
OPOOT7FF6CDA24259 39 85 34 01 00 00
O0007FF6CDA2425F 75 0OC

12: printf("true\n");
O0007FF6CDA24261 U8 8D OD 60 69 00 00

OO0O7FF6CDA2U4268 E8 E9 D1 FF FF
13: }

mov

cmp

jl

00 00 00
jmp

00 00 00
mov

cmp

jge

00 00 00
jmp

00 00 00
mov

cmp

jne

lea
call

eax,dword ptr [b]
dword ptr [a],eax
main+4Bh (@7FF6CDA2422Bh)

dword ptr [rbp+134h],1
main+55h (@7FF6CDA24235h)

dword ptr [rbp+134h],0
eax,dword ptr [d]
dword ptr [c],eax
main+69h (@7FF6CDA24249h)

dword ptr [rbp+138h],1
main+73h (@7FF6CDA24253h)

dword ptr [rbp+138h],0
eax,dword ptr [rbp+138h]
dword ptr [rbp+134h],eax
main+8Dh (@7FF6CDA2426Dh)

mov

mov

mov

mov

rcx, [string "true\n" (07FF6CDA2ABC8h)]
printf (@7FF6CDA21456h)

MSVC Used Strategy 3!

*Yes, that’s right

* Throw out

°In the wor
(Andifint

preconceived notions of elegant/inelegant

d of assembly, you do what works!

ne business of optimization, you find the

fastest operations, even if it is horribly inelegant)

COMP 520: Compilers —S. Ali

44

Organizing Assembly

* We could spend an entire semester on optimization
strategies where we just build the compiler more and
more and more...

*In the interest of time, you may want to take shortcuts
in PA4. If it increases execution time by 40ns, the
autograder won’t likely notice.

45
COMP 520: Compilers —S. Ali

Strategy 1 & 2 (Easy)

* There are instructions that you can use

setz, setl, setle, setg,

COMP 520: Compilers —S. Ali

setge

46

Strategy 1 & 2 (Easy)

* There are instructions that you can use

setz, setl, setle, setg, setge

* They will set a byte (al/cl/dl/bl/ah/ch/dh/bh)
depending on if the flags are zero, less, ..., etc.

* But what if you didn’t see that documentation?

COMP 520: Compilers —S. Ali

47

More Registers?

* Wait a minute, al/cl/dl/bl/ah/ch/dh/bh are not
registers we have seen before!

COMP 520: Compilers —S. Ali

48

)

x64 General Purpose Registers Overview

* Wait a minute, al/cl/dl/bl/ah/ch/dh/bh are not
registers we have seen before!

RAX

64-bit

49
COMP 520: Compilers —S. Ali

=

x64 General Purpose Registers Overview

32-bit

64-bit

COMP 520: Compilers —S. Ali

50

=

x64 General Purpose Registers Overview

16-bit

32-bit

64-bit

COMP 520: Compilers —S. Ali

51

x64 General Purpose Registers Overview

EAX AX
E—
8bit: AH AL

\ J
‘ 16-bit ,

Y
\ ' 32-bit ;
64-bit

52
COMP 520: Compilers —S. Ali

Useful Register List

64-bit RAX RCX RDX RBX RSP RBP RSI RDI

32-bit = EAX ECX EDX EBX ESP EBP ESI EDI
16-bit AX CX DX BX SP BP S DI
8-bit AH AL CH CL DH DL BH BL ? ? ? ?

Honorable Mentions: MMO, ST(0), XMMO, YMMO, ZMMO, CS, SS, DS, ES, FS,
GS, GDTR, IDTR, TR, LDTR, CR, DR, IP...

53
COMP 520: Compilers —S. Ali

Useful Register List (2) (REX prefix)

64-bit R8 R9 R10 R11 R12 R13 R14 R15
32-bit | R8D RIAD R10D @ R11D @ R12D | R13D R14D @ R15D

If operand R: REX.R, if R/M base: REX.B, if index: REX.X

Note: Flag REX.W has to be set to use 64-bit operands (RAX-R15)
(otherwise it defaults to 32-bit operand EAX-R15D)
We will cover encoding later.

54
COMP 520: Compilers —S. Ali

)

=

Back to the problem

* This emulates what your googling might look like:

* “Oh, | see something | haven’t seen before”
* “ have now learned the new thing”
* “How can | apply the new thing?”

COMP 520: Compilers —S. Ali

55

Back to the problem

* We are currently after:

e “| want to resolve a == b” to a value

COMP 520: Compilers —S. Ali

56

Back to the problem

* We are currently after:

* “l want to resolve a == b” to a value

| will XOR RAX,RAX (Why?)
o | will CMP a,b |
e | will SE'TE al

 Now RAX contains 0 or 1, depending on a==b

COMP 520: Compilers —S. Ali

Strategy 1 & 2 (Easy)

* But what if you didn’t see that documentation?

COMP 520: Compilers —S. Ali

Strategy 1 & 2

* There is an instruction that you can use

pushfq

t stores the RFLAGS data on the stack

F-rom t

* Examp

nis, we can determine >=, <=, <, >, ==, I=

e: [rsp] & 0x00CO

Same as “<="
Why? (You will need to research RFLAGS)

COMP 520: Compilers —S. Ali

Strategy 1 & 2 (without 5.

if([rsp] & 0x00CO)

Any ideas on what the corresponding assembly looks

like? Hint: cmp is not needed.

COMP 520: Compilers —S. Ali

=L

(L)

60

Strategy 1 & 2 (without SE'TL.

e

if([rsp] & 0x00CO)

Any ideas on what the corresponding assembly looks
like? Hint: cmp is not needed.

- N
and gword|rsp], 0xCO

JHZ e o o
-)

COMP 520: Compilers —S. Ali

Lastly: Conditional jump is misleading

if(cond)
StmtA
StmtB

Will see this in action in
the next section

More accurately: jump if the condition is NOT true.

So 1fStmt will be: jmp if condition is false, otherwise
continue to “ThenStmt”, then jmp past “ElseStmt”

62
COMP 520: Compilers —S. Ali

What have we learned?

* Evaluating the condition parameter will be challenging

* But not intellectually difficult, just need to make sure
your code “lines up” properly with what you want.

63
COMP 520: Compilers —S. Ali

Organizing Then/Else

COMP 520: Compilers —S. Ali

Two chunks of code

* What to execute w

* What to execute w

if(cond)
ThenStmt
(else ElseStmt)?

COMP 520: Compilers —S. Ali

nen t

nen t

ne condition is true (if cond)

ne condition is false (else)

e THE UNIVERSITY

”l f NORTH CAROLINA
1 af CHAPEL HILI

=

Recall Demo Example

.text:88518FC9 mov eax, [eaxyiD4h]
.text:@88518FCF cmp [ecx+BEBh], eax ; This looks interesting
.text:@88518FD5 jg short loc_ text 513FF@ ; Some kind of compariscon
5 ¥ L
e (5]] (i =]
.text:88518FD7 mov eax, [ecx] .text:88518FF@
.text:88518FD9 call dword ptr [eax+28h] .text:@8@8518FF@ loc_ text S518FF@:
.text:88518FF@ mov ecx, offset dword bss 9196E@
.text:@8518FF5 mov dword ptr [esp], &
.text:@8@8518FFC lea ebx, [ebpt+var 18]
.text:@@8518FFF call sub text SBA3AR

COMP 520: Compilers —S. Ali

66

Recall Demo Example

.text:88518FC9 mov eax, [eaxyiD4h]
.text:@88518FCF cmp [ecx+BEBh], eax ; This looks interesting
.text:@88518FD5 jg short loc_ text 513FF@ ; Some kind of compariscon
Y Y
e (5]] (i =]
.text:88518FD7 mov eax, [ecx] .text:88518FF@
.text:88518FD9 call dword ptr [eax+28h] .text:@8@8518FF@ loc_ text S518FF@:
.text:88518FF@ mov ecx, offset dword bss 9196E@
.text:@8518FF5 mov dword ptr [esp], &
.text:@8@8518FFC lea ebx, [ebpt+var 18]
.text:@@8518FFF call sub text SBA3AR

COMP 520: Compilers —S. Ali

The “not true” portion of code is
immediately after the “jump if true”

67

Recall Demo Example

.text:88518FC9 mov eax, [eaxyiD4h]
.text:@88518FCF cmp [ecx+BEBh], eax ; This looks interesting
.text:@88518FD5 jg short loc_ text 513FF@ ; Some kind of compariscon
¥ 5 L
bl el =] e 5=
.text:88518FD7 mov eax, [ecx] .text:88518FF@
.text:88518FD9 call dword ptr [eax+28h] .text:@8@8518FF@ loc_ text S518FF@:
.text:88518FF@ mov ecx, offset dword bss 9196E@
.text:@8518FF5 mov dword ptr [esp], &
.text:@8@8518FFC lea ebx, [ebpt+var 18]
.text:@@8518FFF call sub text SBA3AR

But we don’t always have an else statement!

COMP 520: Compilers —S. Ali

Misleading Conditions Part 1

if(x==3) We have no else statement.

X = 4; What if we branch on the same

y = 3; ‘condition as our source code?

4

i.e., use “je” because we see “==’

69
COMP 520: Compilers —S. Ali

if(x ==

y = 3,

COMP 520: Compilers —S. Ali

X = 4;

Misleading Conditions Part 1

3)

We have no else statement.

So the code could be:

IsEq:
Afterkq:

cmp [x], 3
je IsEq

jmp Afterkq
mov |x], 4
mov |y], 3

70

=

Misleading Conditions Part 2

‘ if(x==3) cmp [x], 3
X = 4; jne AfterIfStmt
y = 3; h mov [x], 4

AfterIfStmt: mov [y], 3

| .

Less instructions is better!

71
COMP 520: Compilers —S. Ali

Misleading Conditions Part 3

if(x ==
X = 4;
else

x = b;

y = 3;

COMP 520: Compilers —S. Ali

3)

cmp
jne
mov
Jmp
AfterIfStmt: mov
AfterElseStmt :mov

[x], 3
Afterl{fStmt
1x],4
AfterElseStmt
[x], 5

Ly], 3

72

Instruction Patching

e But we do not know where an “AfterlfStmt” is!
e |deas?

COMP 520: Compilers —S. Ali

73

Instruction Patching (2)

e But we do not know where an “AfterlfStmt” is!

* Generate a placeholder conditional jump
*E.g., Jjge 0x00000000

* Keep track of where you have this placeholder

COMP 520: Compilers —S. Ali

74

Instruction Patching (3)

* Generate a placeholder conditional jump
*E.g., Jjge 0x00000000

* Keep track of w
* Generate the “t

nere you have this placeholder

nenStmt” code

* Finally, go back and patch “placeholder”
e jge 0x00000000 -> jge 0x00001CEO

COMP 520: Compilers —S. Ali

75

PA3 Due soon, PA4 Next!

COMP 520: Compilers —S. Ali

End

THE UNIVERSITY
I of NORTH CAROLINA
i af CHAPEL HILL

THE UNIVERSITY
I of NORTH CAROLINA
i af CHAPEL HILL

THE UNIVERSITY
I of NORTH CAROLINA
i af CHAPEL HILL

THE UNIVERSITY
I of NORTH CAROLINA
i af CHAPEL HILL

	Slide 1: COMP 520 - Compilers
	Slide 2: PA3 Extension
	Slide 3: Finally, PA4!
	Slide 4: Finally, PA4!
	Slide 5: Today’s Goal
	Slide 6: Today’s Goal
	Slide 7: Intermediate Goal
	Slide 8: Intermediate Goal (2)
	Slide 9: Intermediate Goal (3)
	Slide 10: Virtual Memory
	Slide 11: Virtual Memory
	Slide 12: Variable References- Where?
	Slide 13: Where is .bss?
	Slide 14: Where is .bss?
	Slide 15: Executable Section
	Slide 16: Code Generation
	Slide 17: Code Generation Example
	Slide 18: Code Generation Example
	Slide 19: Code Generation Example
	Slide 20: Code Generation Example
	Slide 21: Code Generation Example
	Slide 22: Code Generation Example
	Slide 23: Code Generation Example
	Slide 24: Code Generation Example
	Slide 25: Code Generation Example
	Slide 26: Code Generation Example
	Slide 27: Code Generation Example
	Slide 28: Code Generation Example
	Slide 29: Code Generation Example
	Slide 30: Code Generation Example
	Slide 31: Code Generation Example
	Slide 32: Let’s see this in action.
	Slide 33: In-Class Demo
	Slide 34: Generating Branches
	Slide 35: Condition
	Slide 36: Conditions (S1)
	Slide 37: Conditions (S2)
	Slide 38: Conditions (S3)
	Slide 39: Conditions (S3)
	Slide 40: Strategy 3
	Slide 41: What do you think?
	Slide 42: What strategy is this?
	Slide 43
	Slide 44: MSVC Used Strategy 3!!
	Slide 45: Organizing Assembly
	Slide 46: Strategy 1 & 2 (Easy)
	Slide 47: Strategy 1 & 2 (Easy)
	Slide 48: More Registers?
	Slide 49: x64 General Purpose Registers Overview
	Slide 50: x64 General Purpose Registers Overview
	Slide 51: x64 General Purpose Registers Overview
	Slide 52: x64 General Purpose Registers Overview
	Slide 53: Useful Register List
	Slide 54: Useful Register List (2) (REX prefix)
	Slide 55: Back to the problem
	Slide 56: Back to the problem
	Slide 57: Back to the problem
	Slide 58: Strategy 1 & 2 (Easy)
	Slide 59: Strategy 1 & 2
	Slide 60: Strategy 1 & 2 (without SETLE)
	Slide 61: Strategy 1 & 2 (without SETLE)
	Slide 62: Lastly: Conditional jump is misleading
	Slide 63: What have we learned?
	Slide 64: Organizing Then/Else
	Slide 65: Two chunks of code
	Slide 66: Recall Demo Example
	Slide 67: Recall Demo Example
	Slide 68: Recall Demo Example
	Slide 69: Misleading Conditions Part 1
	Slide 70: Misleading Conditions Part 1
	Slide 71: Misleading Conditions Part 2
	Slide 72: Misleading Conditions Part 3
	Slide 73: Instruction Patching
	Slide 74: Instruction Patching (2)
	Slide 75: Instruction Patching (3)
	Slide 76: PA3 Due soon, PA4 Next!
	Slide 77: End
	Slide 78
	Slide 79
	Slide 80
	Slide 81

